0=-0,004v^2+4/5v-20,4

Simple and best practice solution for 0=-0,004v^2+4/5v-20,4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-0,004v^2+4/5v-20,4 equation:



0=-0.004v^2+4/5v-20.4
We move all terms to the left:
0-(-0.004v^2+4/5v-20.4)=0
Domain of the equation: 5v-20.4)!=0
v∈R
We add all the numbers together, and all the variables
-(-0.004v^2+4/5v-20.4)=0
We get rid of parentheses
0.004v^2-4/5v+20.4=0
We multiply all the terms by the denominator
(0.004v^2)*5v+(20.4)*5v-4=0
We multiply parentheses
0v^2+102v-4=0
We add all the numbers together, and all the variables
v^2+102v-4=0
a = 1; b = 102; c = -4;
Δ = b2-4ac
Δ = 1022-4·1·(-4)
Δ = 10420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10420}=\sqrt{4*2605}=\sqrt{4}*\sqrt{2605}=2\sqrt{2605}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102)-2\sqrt{2605}}{2*1}=\frac{-102-2\sqrt{2605}}{2} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102)+2\sqrt{2605}}{2*1}=\frac{-102+2\sqrt{2605}}{2} $

See similar equations:

| 15x-3(x+4)=-24 | | -4=-3/2+b | | 420+60d=420+60d-80d | | z-5+ 66=59 | | F(x)=5x^2+4x+11 | | 12m+48=-48 | | -1=-19+x | | -5v+2(8-9v)=60-12v | | 8x^2+67x-45=0 | | 12x+6x-8x=64 | | 4x=38-2(×+4) | | x^2+3x=x^2+x+10 | | 4=1x/3 | | -6(7+3x)=-42 | | (4w+8)+(4w+8)+w+w=123 | | 6x-11=6(x-2) | | 16x16=4x | | 60+42.95x=25.42.95x | | 6(x-9)=1x+8 | | 2c+6c=-27 | | -32v-34v=-35v-21v-50 | | -5(w+3)+7=-38 | | 7(7+3x)=175 | | .2(4z−1)=3(z+2) | | 7(7=3x)175 | | 8x-14=10x-8 | | 3x+(-9)=-6x-5 | | 8x-25+1212=9x+34 | | -5(w-3)+7=-38 | | 7(7+3x)=135 | | 5(m-7)=8(3m+8) | | 24=-2n-6n |

Equations solver categories